
  

 

Abstract— Global navigation satellite system (GNSS) plays 

a crucial role in providing the globally referenced positioning 

for self-driving systems. Unfortunately, the numerous 

multipath or non-line-of-sight (NLOS) receptions (known as 

outlier observations) caused by the signal reflections from 

buildings reduce the positioning accuracy of GNSS in dense 

urban environments. The recently investigated factor graph-

based GNSS positioning formulation simultaneously considers 

the historical information, which significantly increases the 

measurement redundancy of state estimation. Taking this 

advantage, this paper proposes an outlier mitigation method 

where the bias involved in the outliers is estimated 

simultaneously with the position of the receiver. Specifically, 

the outliers are firstly detected using a pre-trained deep 

learning network. Secondly, an unknown variable associated 

with the bias is assigned to each identified outlier measurement. 

Then the position of the GNSS receiver, together with the bias 

of outlier measurements, is estimated simultaneously via the 

factor graph optimization (FGO) based on the pseudorange 

measurements and Doppler frequency shift. Finally, the 

effectiveness of the proposed method is validated using a 

dataset collected in the urban canyon by a low-cost automobile-

level GNSS receiver. 

I. INTRODUCTION 

With the rapid development of intelligent transportation, 
there has been an increasingly high demand for accurate and 
low-cost positioning solutions. Global navigation satellite 
system (GNSS) [1] is currently widely used to precisely 
position autonomous ground vehicles [2, 3] and unmanned 
aerial vehicles (UAV) [4]. However, its positioning 
performance in urban areas is severely degraded because 
GNSS measurements are contaminated by signal reflection 
and obstruction from nearby structures (shown in Fig. 1), 
resulting in multipath and non-line-of-sight (NLOS) 
receptions. 

The mitigation of the outlier measurements has been the 
focus of recent research on urban GNSS positioning, and a 
great amount of work is being correspondingly carried out. 
The first attempt was to solve the problem by adding 
additional information, such as a 3D building model or 
onboard sensors. Specifically, three-dimension (3D) 
mapping-aided GNSS (3DMA GNSS) positioning in urban 
environments was employed in [5, 6]. Similarly, the 3D city 
model and GNSS simulator-based method were proposed to 
predict the bias caused by obstacles, and these biased 
observations were constructively applied in [7]. However, the 
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proposed 3D city model-based method requires a 3D building 
model which is not always available. Interestingly, additional 
sensors like light detection and ranging (LiDAR) [8, 9] and 
camera [10] were introduced to detect and mitigate the GNSS 
outliers to further position autonomous systems in urban 
areas. Unfortunately, these methods are limited by the 
availability of additional sensors in practical and low-cost 
applications. 

 

Fig. 1 An illustration of the GNSS measurements 
contaminated by signal reflection and obstruction from 
surrounding structures in an urban environment. 6 out of 12 
satellites suffer reflected signals. 

Thanks to available multiple satellite constellations, the 
number of received satellites has increased significantly, 
making the GNSS positioning issue even more redundant. 
Inspired by this fact, the work in [11] proposed a two-step 
GNSS positioning method with GNSS outlier bias correction. 
Firstly, the position of the GNSS receiver was estimated by 
extended Kalman filter (EKF) based on the pseudocode 
measurement and simplified motion model. Secondly, the 
bias of the potential GNSS outlier measurements was 
estimated based on a linearized observation matrix and 
measurements residuals using the least absolute shrinkage 
and selection operator (LASSO) [12], which is a regression 
analysis method. The work [11] opens a new window for 
research on urban GNSS positioning to explore the 
redundancy of multiple satellite constellations. 
Unfortunately, the above method has two key drawbacks: (1) 
The outliers were simply classified based on the final 
measured residuals of the EKF estimator, failing to explicitly 
identify the outliers. As a result, this method is not applicable 
in case the residuals cannot effectively indicate the outlier 
measurement. (2) The work [11] merely considered the 
measurements at a single epoch, which failed to exploit data 
redundancy and time-correlation from multiple epochs. 
Interestingly, the recently developed factor graph 
optimization-based GNSS positioning formulation [13] 
enables the simultaneous consideration of the measurements 
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from multiple epochs, which performs better than the EKF 
estimator-based GNSS positioning. A similar finding was 
firstly theoretically and experimentally verified in our 
previous work [14] where the performance of EKF on the 
fusion of pseudorange measurements and inertial 
measurement unit (IMU) was compared with that of factor 
graph optimization (FGO). Inspired by this, this paper 
proposes to fill those two key gaps by employing the deep 
learning network and explicitly identifying the potential 
GNSS outlier measurements, and increasing the measurement 
redundancy via the factor graphical model. Firstly, this paper 
exploits the potential of the deep learning network to identify 
the outlier measurements based on the features [15] extracted 
from GNSS raw measurements by our earlier work [16]. 
Then, based on the GNSS pseudorange and Doppler velocity 
measurements, the position of the GNSS receiver and the bias 
of the outlier measurements are simultaneously estimated via 
FGO, where Doppler velocity measurements are used to 
construct the motion connection between sequential epochs 
of states. 

This paper is structured as follows: The method proposed 
in this paper is presented in Section II and elaborated in 
Section III. The experiments are then carried out to evaluate 
the performance of the proposed method in Section IV. In 
Section V, conclusions and future work are summarized. 

II.  OVERVIEW OF THE PROPOSED METHOD 

The framework of the proposed method is depicted in Fig. 
2. The system’s inputs comprise the Doppler velocity 
measurements and raw pseudorange received by the GNSS 
receiver. The pseudorange measurement, as well as the 
position and clock bias of the satellite, are obtained by 
modeling the raw data. Then, in the pseudorange factor 
construction segment, line-of-sight (LOS) and outlier 
pseudorange factors are classified based on the pre-trained 
deep learning network (our team's prior work [16]), in which 
GNSS features such as azimuth, elevation angles were 
extracted with the help of preprocessing the raw data. 
Furthermore, the Doppler factor is derived by modeling the 
Doppler measurements. Finally, by resolving the factor graph 
formulation formed by the pseudorange and Doppler factors, 
the state estimation of the GNSS receiver is derived. More 
specifically, the pseudorange factor involves LOS and outlier 
pseudorange factors. 

 

Fig. 2 The framework of the method presented in this paper. 

The contribution of this paper is listed as follows: 

(1) The method presented in this paper aims to mitigate 
the impacts of the outliers by estimating the 
position of the GNSS receiver and the potential bias 
of outlier measurements based on FGO, where the 

GNSS outlier measurements are identified using the 
deep learning-based network. 

(2) The reliable estimation of the bias associated with 
the outliers strongly depends on the redundancy of 
healthy measurements. To guarantee the 
redundancy of measurements, we propose to 
estimate bias using the sparse estimation method, 
where factor graph-based GNSS positioning 
formulation is employed to simultaneously integrate 
the historical information from multiple epochs. 

III. METHODOLOGY 

The methodology of the GNSS outliers mitigation is 

explained in this section. Specifically, the Doppler frequency 

measurements are utilized to provide velocity constraints 

between sequential epochs, and the Doppler frequency shift 

and pseudorange measurements are loosely coupled (LC) 

integrated based on FGO. The global positioning system 

(GPS) and BeiDou satellite system are used in this paper. 

The GNSS receiver is represented by 𝑟. The set of states 𝛘 of 

the GNSS receiver is denoted as: 

𝛘 = [𝐱𝑟,1, 𝐱𝑟,2, … , 𝐱𝑟,𝑛]       (1) 

𝐱𝑟,𝑡 = (𝐩𝑟,𝑡 , 𝐯𝑟,𝑡 , δ𝑟,𝑡 , 𝑏𝑟,𝑡
1,𝑜, 𝑏𝑟,𝑡

2,𝑜, … , 𝑏𝑟,𝑡
𝑠,𝑜)𝑇   (2) 

where each bold letter 𝐱 denotes the state of GNSS receiver 𝑟 

at different epochs. The subscript 𝑛 indicates the total epochs 

of observations considered in FGO. The 𝐱𝑟,𝑡  represents the 

receiver’s state at epoch 𝑡 , 𝑡 ∈ (1, 𝑛) , which involves the 

position 𝐩𝑟,𝑡(𝑥𝑟,𝑡 , 𝑦𝑟,𝑡 , 𝑧𝑟,𝑡), velocity (𝐯𝑟,𝑡) and receiver clock 

bias (δ𝑟,𝑡). For the sake of simplicity, we only describe the 

receiver clock bias for one of the satellite constellations 

(GPS, Beidou). 𝑏𝑟,𝑡
𝑠,𝑜

 denotes the bias associated with the 

detected outliers. The superscripts 𝑠 and 𝑜 denote the index 

of satellites and the identified outliers, respectively. 

 

Fig. 3 The proposed FGO structure for GNSS positioning. 
The estimated state of the receiver is represented by the 
purple circle, the LOS pseudorange factor by the green 
shaded circle, and the pseudorange factor from the 
contaminated satellites depicted in Fig. 1 by the red circle. 

The structure of the proposed GNSS-based positioning 

factor graph is illustrated in Fig. 3. The purple circle denotes 

the state node 𝐱𝑟,𝑡 of the receiver, and 𝑛 is the total of epochs 

utilized in the optimization. The state nodes in the factor 

graph are connected using the Doppler velocity factor, each 

consisting of the LOS pseudorange factors as well as the 
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outlier pseudorange factor. Our proposed method makes use 

of the sparsity of outlier pseudorange measurements to 

estimate the bias based on the graph structure. 

A. Pseudorange Measurement Modeling 

The raw measurements are provided by the GNSS 
receiver, and the pseudorange measurement for a specific 
satellite 𝑠 at epoch 𝑡 is defined as follows [17]. 

𝜌𝑟,𝑡
𝑠 = 𝑟𝑟,𝑡

𝑠 + 𝑐(δ𝑟,𝑡 − δ𝑟,𝑡
𝑠 ) + 𝐼𝑟,𝑡

𝑠 + 𝑇𝑟,𝑡
𝑠 + 𝑏𝑟,𝑡

𝑠,𝑜 + 𝜀𝑟,𝑡
𝑠   (3) 

where 𝑟𝑟,𝑡
𝑠  denotes the geometric distance from the satellite 𝑠 

to the GNSS receiver 𝑟 at epoch 𝑡. 𝑐 denotes the speed of the 
light. δ𝑟,𝑡

𝑠  denotes the clock bias of satellite. 𝐼𝑟,𝑡
𝑠  and 𝑇𝑟,𝑡

𝑠  

represent ionospheric and tropospheric delay distances, 
respectively, and they are modeled following the method in 

[18]. 𝑏𝑟,𝑡
𝑠,𝑜

 indicates the bias mentioned in (2), and the 

associated outliers depends on the identification of deep 
learning network. Concretely, if the satellite 𝑠 is classified as 
healthy, then the bias equals 0. Otherwise, the value of bias 
is associated with the detected outliers. The details of the 
identification of outliers are given in Algorithm 1. Besides, 
the effects of errors caused by multipath and NLOS 
receptions and system errors (e.g receiver noise) are 
expressed by 𝜀𝑟,𝑡

𝑠 . 

Before constructing the observation model, we recall the 
principles of outlier identification by the deep learning 
network employed in this paper, which is one of our previous 
works [16]. The input of the deep learning network was 
extracted from brief representations including elevation and 
azimuth angles, carrier-to-noise density ratio ( 𝐶/𝑁0 ), 
individual pseudorange residual and the root-sum-squares of 
pseudorange residuals from all available satellites. Satellite 
visibility was intimately related to these GNSS features, and 
pseudorange residuals were highly dependent on the 
environment. To effectively model the network, the features 
were extracted from the preprocessed data. The preprocessed 
data were obtained by solving the weighted least squares, as 
shown in Fig. 2. Then, the deep learning network output the 
predicted visibility value of satellites (𝑝𝑠,𝑣 ) and predicted 
pseudorange error (𝜌𝑠,𝑒 ). Besides, the proposed network 
integrated conventional fully connected neural networks 
(FCNNs) and long short-term memory (LSTM) networks. 
More details about the designed network are presented in our 
prior work [16]. 

The details of the algorithm used to identify the outlier 
are seen in Algorithm 1. The algorithm’s inputs are 𝑝𝑠,𝑣 and 
𝜌𝑠,𝑒 . Besides, the research [19] shows that 𝐶/𝑁0  also can 
describe signal strength, and thus is introduced to the 
algorithm, denoted by 𝑠𝐶𝑁0 . T𝐶𝑁0  denotes the minimum 
received signal strength. T𝑠,𝑣 and T𝑠,𝑒 are the thresholds set 
for visibility value and pseudorange error to be 
experimentally determined. 

Based on the classification of visibility, the observation 
model for the LOS pseudorange measurements of a specific 
satellite 𝑠 is stated as: 

𝜌𝑟,𝑡
𝑠 = ℎ𝑟,𝑡

𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡
𝑠, δ𝑟,𝑡) + ω𝑟,𝑡

𝑠       (4) 

with ℎ𝑟,𝑡
𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡) = ||𝐩𝑡
𝑠 − 𝐩𝑟,𝑡|| + δ𝑟,𝑡 

where the position of the satellite at epoch 𝑡 is indicated by 
𝐩𝑡

𝑠 and that of the receiver by 𝐩𝑟,𝑡. The noise represented by 

ω𝑟,𝑡
𝑠  is assumed to be Gaussian white noise, ω𝑟,𝑡

𝑠 ~𝒩(0, Σ𝑟,𝑡
𝑠 ). 

Σ𝑟,𝑡
𝑠  denotes the covariance for the given satellite 𝑠 . 

Therefore, the error function e𝑟,𝑡
𝑠  for a given measurement 

𝜌𝑟,𝑡
𝑠  can be derived as: 

||e𝑟,𝑡
𝑠 ||𝚺𝑟,𝑡

𝑠
2 = ||𝜌𝑟,𝑡

𝑠 − ℎ𝑟,𝑡
𝑠 (𝐩𝑟,𝑡 , 𝐩𝑡

𝑠, δ𝑟,𝑡)||𝚺𝑟,𝑡
𝑠

2    (5) 

where the covariance Σ𝑟,𝑡
𝑠  is obtained based on the elevation 

angle and 𝐶/𝑁0 of the satellite. The details are given in [20]. 

Algorithm 1: Identification of outlier satellite 

Input: The predicted visibility value 𝑝𝑠,𝑣 , the predicted 

pseudorange error 𝜌𝑠,𝑒 , the corresponding 𝐶/𝑁0  of the 

satellite 

Output: The outlier 𝜌𝑟,𝑡
𝑠,𝑜

 and the LOS measurement 𝜌𝑟,𝑡
𝑠  

Step1: To identify the outlier satellite based on the 𝑝𝑠,𝑣, 𝜌𝑠,𝑒 

and  𝑠𝐶𝑁0  of the satellite are: 

𝑝𝑠,𝑣 < T𝑠,𝑣                                       (6) 

𝜌𝑠,𝑒 > T𝑠,𝑒                                       (7) 

If the predicted visibility value and pseudorange error of the 

satellite satisfy the above conditions (6) and (7) 

simultaneously, then the satellite is identified as an outlier, 

otherwise, it is identified as LOS. 

Step2: The signal strength information is employed to 

further distinguish potential outliers from the LOS identified 

based on Step 1 as follows: 

𝑠𝐶𝑁0 < T𝐶𝑁0                                      (8) 

If the 𝑠𝐶𝑁0  associated with the identified LOS is smaller than 

T𝐶𝑁0 , then the satellite is identified as an outlier, otherwise, 

it is identified as LOS. 

The observation model of the outlier measurement is 
formulated as: 

𝜌𝑟,𝑡
𝑠,𝑜 = ℎ𝑟,𝑡

𝑠,𝑜(𝐩𝑟,𝑡 , 𝐩𝑡
𝑠,𝑜, δ𝑟,𝑡 , 𝑏𝑟,𝑡

𝑠,𝑜) + ω𝑟,𝑡
𝑠,𝑜

     (9) 

with ℎ𝑟,𝑡
𝑠,𝑜(𝐩𝑟,𝑡 , 𝐩𝑡

𝑠,𝑜, δ𝑟,𝑡 , 𝑏𝑟,𝑡
𝑠,𝑜) = ||𝐩𝑡

𝑠,𝑜 − 𝐩𝑟,𝑡|| + 𝑏𝑟,𝑡
𝑠,𝑜 +
δ𝑟,𝑡 

where the bias concerning the identified outlier is indicated 

by 𝑏𝑟,𝑡
𝑠,𝑜

 and the noise represented by ω𝑟,𝑡
𝑠,𝑜

 is also assumed to 

be Gaussian white noise, ω𝑟,𝑡
𝑠,𝑜~𝒩(0, Σ𝑟,𝑡

𝑠,𝑜). Σ𝑟,𝑡
𝑠,𝑜

 denotes the 

covariance for the outlier satellite. The error function e𝑟,𝑡
𝑠,𝑜

 for 

the outlier measurement 𝜌𝑟,𝑡
𝑠,𝑜

 is then derived as: 

||e𝑟,𝑡
𝑠,𝑜||𝚺𝑟,𝑡

𝑠,𝑜
2 = ||𝜌𝑟,𝑡

𝑠,𝑜 − ℎ𝑟,𝑡
𝑠,𝑜(𝐩𝑟,𝑡 , 𝐩𝑡

𝑠,𝑜, δ𝑟,𝑡 , 𝑏𝑟,𝑡
𝑠,𝑜)||Σ𝑟,𝑡

𝑠,𝑜
2   (10) 

where Σ𝑟,𝑡
𝑠,𝑜

 is obtained in the same way as Σ𝑟,𝑡
𝑠 , which is 

based on the elevation angle and 𝐶/𝑁0 of the outlier satellite 
[20]. 
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B. Doppler Velocity Measurement Modeling 

The measured velocity can be calculated based on the 
weighted least square method [21]. The observation model 
for the Doppler velocity measurement is expressed as: 

𝐯𝑟,𝑡
𝐷𝑉 = ℎ𝑟,𝑡

𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡) + 𝛚𝑟,𝑡
𝐷𝑉       (11) 

with ℎ𝑟,𝑡
𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡) =

[
 
 
 
 
 
(𝑥𝑟,𝑡+1 − 𝑥𝑟,𝑡)

Δ𝑡
⁄

(𝑦𝑟,𝑡+1 − 𝑦𝑟,𝑡)
Δ𝑡

⁄

(𝑧𝑟,𝑡+1 − 𝑧𝑟,𝑡)
Δ𝑡

⁄ ]
 
 
 
 
 

 

where the velocity measurement is represented by 𝐯𝑟,𝑡
𝐷𝑉. The 

noise represented by 𝛚𝑟,𝑡
𝐷𝑉  is also assumed to be Gaussian 

white noise, 𝛚𝑟,𝑡
𝐷𝑉~𝒩(0, 𝚺𝑟,𝑡

𝐷𝑉). 𝚺𝑟,𝑡
𝐷𝑉  denotes the covariance 

matrix for 𝐯𝑟,𝑡
𝐷𝑉 . The states of the receiver at consecutive 

epochs 𝑡 and 𝑡 + 1 are individually represented by 𝐱𝑟,𝑡  and 

𝐱𝑟,𝑡+1 . Δ𝑡  denotes the time difference between the two 

consecutive states. Thus, the error function for a given 
velocity measurement is derived as: 

||𝐞𝑟,𝑡
𝐷𝑉||

𝚺𝑟,𝑡
𝐷𝑉

2 = ||
𝐯𝑟,𝑡
𝐷𝑉+𝐯𝑟,𝑡+1

𝐷𝑉

2
− ℎ𝑟,𝑡

𝐷𝑉(𝐱𝑟,𝑡+1, 𝐱𝑟,𝑡)||𝚺𝑟,𝑡
𝐷𝑉

2  

 (12) 

C. GNSS Positioning Using Factor Graph Optimization 

The objective function of the GNSS positioning 
problem based on FGO can be expressed as: 

𝛘∗ = arg min
𝛘

∑ ||𝐞𝑟,𝑡
𝐷𝑉||

𝚺𝑟,𝑡
𝐷𝑉

2
𝑠,𝑡 + ||𝐞𝑟,𝑡

𝑠 ||𝚺𝑟,𝑡
𝑠

2 + ||𝐞𝑟,𝑡
𝑠,𝑜||𝚺𝑟,𝑡

𝑠,𝑜
2  

   (13) 

By resolving the objective function, the optimal estimation of 
the sets of states represented by 𝛘∗  can be derived. 
Meanwhile, Ceres [22] is used as the nonlinear optimization 
solver. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental scenario: The experiment data was 
collected in an urban canyon in Hong Kong. Fig. 4-(a) and 
(b) show the experimental trajectory and corresponding 
urban scenario, respectively. As shown in Fig. 4-(b), lots of 
tall buildings located on both sides of the road introduced 
lots of challenges to the GNSS positioning. 

Sensor setup: In this experiment, a u-blox M8T 
automobile-level GNSS receiver was employed to collect 
satellite (GPS/BeiDou) observations at a frequency of 1 Hz. 
To evaluate the improved performance of the proposed 
method, the ground truth of positioning was provided by a 
NovAtel SPAN-CPT inertial navigation system. To 
guarantee the accuracy and reliability of the ground truth, 
the data from SPAN-CPT was post-processed using the 
inertial explorer software from NovAtel. The timestamp of 
collected data was synchronized in a robot operation system 
(ROS) [23]. The setup of the sensor used in this paper is 
introduced in more detail in our recently open-sourced 
UrbanNav dataset [24]. 

More specifically, the processor of our laptop computer 
used for evaluating the positioning performance was Intel 

Core i7-9750H CPU @2.60GHz and 16.0 GB RAM. To 
validate the effectiveness of the proposed method, we 
compared the following methods: 

(1) FGO: GNSS positioning by LC integration of 
Doppler velocity measurements and pseudorange 
measurements based on FGO [13]. 

(2) FGO-DL-Outliers (the proposed method): The 
effects of GNSS outliers are mitigated by LC 
integration of Doppler velocity measurements and 
pseudorange measurements based on FGO. 
Meanwhile, the outliers are identified by the trained 
deep learning (DL) network [16]. The bias state 
involved in the outliers is then estimated 
simultaneously with the position of the receiver. 

The positioning accuracy of the above two methods was 
evaluated under the local east-north-up (ENU) coordinate 
system. Due to the geometric distribution of satellites, the 
GNSS positioning in the upward direction was not ideal, so 
only the positioning accuracy in the eastern and northern 
directions was evaluated. 

 

Fig. 4 The experimental setups are shown in the left figure. 
The trajectory and experimental scenario are shown in Fig. 
4-(a) and (b). 

A. Experimental Evaluation in an Urban Canyon 

Table 1 displays the GNSS positioning errors for the two 
methods mentioned above. Based on FGO LC integration of 
pseudorange and Doppler velocity measurements, the mean 
positioning error was 10.03 meters, and the maximum 
positioning error was even up to 22.84 meters. With the aid 
of the proposed method FGO-DL-Outliers, the mean error 
dramatically decreased to 8.67 meters with the standard 
deviation (STD) of 3.89 meters. The mean positioning error 
made by the proposed method was reduced by about 13.5% 
compared to that made by the FGO method. The trajectories 
of the two listed methods and ground truth are shown in Fig. 
5. The ground truth was provided by the SPAN-CPT. 
Compared to the FGO method, the overall trajectory of 
FGO-DL-Outliers was closer to the ground truth. Fig. 6 
shows the mean errors of the listed two methods. As can be 
seen from the figure, the mean error of the proposed method 
(blue curve) dramatically dropped from 10.03 meters to 8.67 
meters, revealing that the proposed method could help to 
reduce the impact of the outlier measurement on the used 
dataset. 
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Table.1 The GNSS positioning error based on the two listed 
methods 

Item FGO 
FGO-DL-

Outliers 

Improve

ment 

Mean (m) 10.03 8.67 13.5% 

STD (m) 4.70 3.89 17.2% 

Max (m) 22.84 30.39  

 

Fig. 5 The trajectories of the two methods FGO (red) and 
FGO-DL-Outliers (blue). The ground truth is shown in the 
black curve. The x-axis and y-axis denote east and north 
directions, respectively. 

 

Fig. 6 The mean error of the two listed methods: FGO (red), 
and FGO-DL-Outliers (blue). 

Interestingly, the maximum error conversely increased 
from 22.84 meters (FGO) to 30.39 meters using the 
proposed method, corresponding to epoch “A” in Fig. 6. 
Conversely, a great improvement can be seen in epoch “B”, 
as the error decreased from 18 meters to 6.76 meters with 
the help of the proposed method. To explore the underlying 
reason, the number of outlier satellites and the total number 
of satellites are shown in Fig. 7, respectively. The more 
detailed information on the number of satellites at epochs 
“A” and “B” is further displayed in Fig. 8. 

To further show the results of the outlier detected using 
the proposed method, we labeled the ground truth of the 
satellite visibility using the 3D building model based on our 
previous work in [25]. Meanwhile, the satellite visibility at 
epoch “A” and epoch “B” is shown in Fig. 8 via skyplot 
[25]. Specifically, the gray shaded area represents the non-

sky area (potentially blocked by buildings) and the white 
area represents the sky area. The different circles in the 
skyplot denote different elevation angles with a resolution of 
10 degrees. The satellite located within the non-sky area is 
the NLOS (red shaded circle) and vice versa.  

 

Fig. 7 The total number of satellites and the number of 
outlier satellites. The total number of satellites at each epoch 
is denoted by the red curve, the number of outlier satellites 
by the blue curve, and the number of the outlier satellites 
predicted by the deep learning network by the green curve. 

 

Fig. 8 The skyplot corresponds to epochs “A” and “B”. The 
red shaded circle denotes the outliers, and the green shaded 
circle denotes the healthy satellites. The outliers shown in 
the skyplot are labeled by a 3D building model as ground 
truth. 

At epoch “A”, the total number of satellites received by 
the GNSS receiver was 11. The exact number of outliers was 
1, which was labeled by the 3D building model as ground 
truth. However, 8 outliers were predicted by the deep 
learning network. Therefore, it can be concluded that the 
positioning error increased significantly at this epoch due to 
the limited redundancy of measurements. Additionally, 
limited measurement redundancy was caused by healthy 
measurements misidentified as outliers. 

At epoch “B”, the total number of satellites was 13, and 
the exact number of outlier satellites was 7, which was 
labeled by the 3D building model as ground truth. The 
number of the predicted outlier measurements was the same 
as the ground truth, with the measurement redundancy at this 
epoch. Therefore, the positioning performance at epoch “B” 
was improved. 

V. CONCLUSION AND FUTURE WORK 

The outliers mitigation method based on FGO was 
proposed for GNSS positioning in this research, where the 
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outlier measurements were first identified using the deep 
learning network and then the bias associated with the 
outlier measurements was estimated together with the state 
of the GNSS receiver simultaneously.  

The effectiveness of the proposed method was 
preliminarily validated in urban Hong Kong. According to 
the preliminary result, the impacts of GNSS outlier 
measurement were mitigated for further GNSS positioning. 
However, the improved performance of the proposed 
method is limited by bound measurement redundancy. In 
other words, an intelligent transportation system remains a 
challenge in urban areas. 

Moreover, the same uncertainties were assigned to the 
healthy LOS and outlier GNSS measurements although the 
additional bias for the outlier measurements was estimated. 
Therefore, we intend to explore the adaptive covariance 
matrix for potential GNSS outlier measurements and verify 
our proposed method by using more data collected in urban 
environments in future work. 
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